Publications

10 Selected Publications

  • Akkaya, O., Pérez-Pantoja2, D., Calles, B., Nikel, P.I. and de Lorenzo, V. (2018) The metabolic redox regime of Pseudomonas putida tunes its evolvability towards novel xenobiotic substrates. mBio 9: e01512-18-e01512-18

  • Dvorak, P. and de Lorenzo, V. (2018). Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab Eng 48: 94-108

  • Dvořák P, Nikel PI, Damborský J, de Lorenzo V. (2017) Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv. 35: 845-866.

  • Goñi-Moreno, A., Carcajona, M., Kim, J., Martínez-García, E., Amos, M. and de Lorenzo V. (2016) An implementation-focussed bio/algorithmic workflow for synthetic biology. ACS Synth Biol 5: 1127-1135

  • Aparicio, T., Ingemann, S., Nielsen A., de Lorenzo V. and Martínez-García (2016) The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 11: 1309-1319

  • Guantes R, Benedetti I, Silva-Rocha R, de Lorenzo V. (2016) Transcription factor levels enable metabolic diversification of single cells of environmental bacteria. ISME J. 10: 1122-1133

  • Nikel, P.I., Chavarría, M., Führer, T., Sauer, U. and de Lorenzo V. (2015) Pseudomonas putida KT2440 metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290: 25920-25932

  • Jimenez, J.I., Fraile, S., Zafra, O., de Lorenzo, V. (2015) Phenotypic knockouts of selected metabolic pathways by targeting enzymes with camel-derived nanobodies (VHHs). Metab. Eng. 30: 40-48.

  • Martínez-García, E., Aparicio, T., Goñi-Moreno, A., Fraile, S. and de Lorenzo, V. (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucl Acids Res 43: D1183-1189.

  • Calles, B. and de Lorenzo, V. (2013) Expanding the Boolean logic of the prokaryotic transcription factor XylR by functionalization of permissive sites with a protease-target  sequence. ACS Synthetic Biology 2: 594–603